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Abstract 
One of the most challenging problems in urban transportation planning is the lack of fine-grain 
data on freight movements. Cities and regions do not know how many trucks operate in the region 
and have only limited information on freight flows. Without a consistent and current source for 
freight volume and origin-destination data, it is difficult to manage or plan for freight in 
metropolitan areas. This project aims to develop methods to generate freight volume information, 
e.g., estimate hourly origin-destination counts (OD-matrices), from sensor observations. Available 
sensors include CCTV cameras to monitor the roadways, Weight-In-Motion Stations (WIM), and 
other available sensors such as Truck Activity Monitoring Systems (TAMS). Trucks must be 
detected and counted on the CCTV cameras, and truck observations with varying accuracy must 
be integrated in time and space. By continuously updating sensor data, we can generate fine-
grained truck flow estimates on historical data and in a close to real-time fashion. With this work, 
we aim to validate the feasibility of detecting trucks in CCTV videos and estimating truck flow 
over the highway systems in a region of study most impacted by truck activity situated north and 
east of the Ports of Los Angeles and Long Beach. 
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Validation of Freight Volume Modeling on Major 
Highway Links 

Executive Summary 
One of the most challenging problems in urban transportation planning is the lack of fine-grain 
data on freight movements. Cities and regions do not know how many trucks operate in the region 
and have only limited information on freight flows. Without a consistent and current source for 
freight volume and origin-destination data, it is difficult to manage or plan for freight in 
metropolitan areas. This project aims to develop methods to generate freight volume information, 
e.g., estimate hourly origin-destination counts (OD-matrices), from sensor observations. Available 
sensors include CCTV cameras to monitor the roadways, Weight-In-Motion Stations (WIM), and 
other available sensors such as Truck Activity Monitoring Systems (TAMS). Trucks must be 
detected and counted on the CCTV cameras, and truck observations with varying accuracy must 
be integrated in time and space. By continuously updating sensor data, we can generate fine-
grained truck flow estimates on historical data and in a close to real-time fashion. With this work, 
we aim to validate the feasibility of detecting trucks in CCTV videos and estimating truck flow 
over the highway systems in a region of interest (ROI) most impacted by truck activity situated 
north and east of the Ports of Los Angeles and Long Beach. 
 
Our goal is to validate the feasibility of leveraging the existing infrastructure and existing and 
emerging sensors, including repurposed sensors such as CCTV cameras and WIM stations, to 
estimate truck flow. For this, we collected a dataset of CCTV, WIM, and TAMs sensor data over 
ROI and investigated the feasibility and usefulness of using traffic monitoring CCTV videos for 
truck detection and counting and created and studied novel truck flow estimation algorithms. 
 
We have selected an ROI approximately 12 square miles in size north of the Ports of Los Angeles 
and Long Beach. This area was specifically chosen due to the significant impact of truck traffic on 
freight movement to and from major ports. The constant flow of trucks transporting goods from 
the ports to various distribution centers and end destinations contributes to substantial traffic 
congestion in the surrounding areas. This heavy truck traffic not only affects the efficiency of 
transportation logistics but also has significant environmental and health implications. Emissions 
from diesel trucks contribute to air pollution, which can lead to health issues for residents. The 
increased traffic volume also leads to greater wear and tear on infrastructure, necessitating more 
frequent repairs and maintenance. 

To assemble the Truck Sensing Dataset, we worked with Caltrans District 7 to collect CCTV 
cameras, with the California Department of Transportation Traffic Operations Weigh-in-Motion 
to collect WIM station data, and with the UCI Institute of Transportation Studies to collect Truck 
Activity Monitoring System (TAMS) data. 
Regarding sensor counts, the dataset contains 21 CCTV cameras, 20 WIM stations, and 6 TAMS 
stations. The ROI counts are 9 CCTV cameras, 14 WIM stations, and 2 TAMS stations. For all 
sensors in the ROI, data were available for Fri 11/3, 5 PM to Sun 11/5, 12 AM (19 hours), and Tue 
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11/7, 9 AM to Wed 11/8, 10 AM (13 hours). Therefore, we used this subset and time period in the 
experiments to evaluate the truck detection and counting and the truck flow estimation algorithms. 
 
YOLO, a deep learning-based object detection algorithm, and StrongSORT, a robust tracking 
algorithm, were applied to Caltrans CCTV videos in the ROI to study the feasibility and usefulness 
of using traffic monitoring videos for truck detection and counting. For training the models, 9 one-
minute clips are used from locations three locations containing recordings of roads with moving 
trucks, shot at 6 am, 10 am, and 2 pm. One frame per second (1fps) was used to sample images in 
labeling videos to reduce manual labor while not missing truck detection. We train the model to 
detect the four classes in our dataset. The model performance was assessed by comparing the 
results with the ground truth count. YOLOv5, a variant of YOLO, was used due to its high 
detection accuracy and very low inference times, allowing us to deploy it on video streams. 
Additionally, the StrongSORT provides robust object tracking even during extended periods of 
occlusion, a typical phenomenon on highways, especially during rush hours. We used 10 1-minute 
CCTV videos shot at location 255 between ~ 9:01-9:11 am to generate inference results. The 10 
videos are stitched together to generate one 10-minute, 8-second-long video. Precision, Recall, 
and Mean average precision (mAP50)  using an Intersection-over-Union (IoU) threshold of 0.5 
was 0.762, 0.746, and 0.777, and the absolute difference between detected and actual normalized 
by an actual number of trucks was 0.21 in the overall sampled test cases. 
 
Because CCTV and WIM sensors do not uniquely identify and track vehicles, extracting mobility 
patterns from their detections is challenging. We have proposed a framework named VPE, short 
for Visit Probability Estimation, that processes roadside sensor observations to estimate the 
probability with which a vehicle visits a road segment at a specific time. VPE is powered by LEM, 
short for Location Estimation Model, a novel mathematical model that calculates location 
transition probabilities while considering the sensors’ reliability, and APD+, an algorithm that 
captures the uncertainty of movement between two endpoints. Our proposed algorithm APD+ to 
discover the most likely feasible paths the vehicle could have taken. We refer to the set of these 
paths as bridgelet. Subsequently, we weigh each constituent path of the bridgelet and aggregate 
them to produce a probability cloud, i.e., a mapping from road segments to the probability that the 
segment was visited during the trip. We detail the steps in our paper “Estimating mobility 
distributions from uncertain roadside sensor datasets” published at the 25th International 
Conference on Mobile Data Management (MDM’24). Our experiments on synthetic datasets show 
that the proposed methods achieve high accuracy while maintaining practical computation time. 
We applied our proposed framework, VPE, to several realistically synthesized datasets of roadside 
sensor observations. In our simulations, our methods were able to estimate visit probabilities 
accurately. Specifically, the mean Jensen-Shannon divergence between the estimated and actual 
(simulated) distribution was approximately 5%, while the mean F1 score was approximately 40%. 
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Introduction 
In the following, we present a detailed report on the research. This includes (i) a curated Truck 
Sensing Dataset containing sensor data in the ROI that we have leveraged to produce experimental 
results and that other transportation researchers can use, (ii) state-of-the-art Truck Detection and 
Counting using a deep learning-based algorithm that we have specifically trained and tested on 
CCTVs in the ROI to investigate the feasibility and usefulness of using traffic monitoring CCTV 
videos for truck detection and counting, and (iii) a novel framework named VPE, short for Visit 
Probability Estimation, that processes roadside sensor observations to estimate the probability with 
which a vehicle visits a road segment at a specific time that we used to investigate the feasibility 
of truck flow estimation. 
 
Truck Sensing Dataset 
To assemble the Truck Sensing Dataset, we worked with Caltrans District 7 to collect CCTV 
cameras, with the California Department of Transportation Traffic Operations Weigh-in-Motion 
to collect WIM station data, and with the UCI Institute of Transportation Studies to collect Truck 
Activity Monitoring System (TAMS) data. 
 
Other sensors in the area were also considered but not retained as they did not provide sufficiently 
accurate information. For example, single induction loop detectors (ILD) systems, while present 
in large numbers in the ROI, have been shown to provide accurate speed and occupancy 
measurements for passenger vehicles but not for trucks. In addition, we have examined the IMSC 
ADMS https://adms.usc.edu/app data consisting of IDL data as a source of traffic information that 
could be used by the flow estimation algorithms and found that in the ROI, the data was too sparse 
and unreliable due to many IDL sensors being defective. Figure 1 presents an overview of arterial 
and highway IDL sensor availability in the ROI from 2019 to 2023. 
 
Finally, we have identified other sensors, such as the RFID sensors at the ports, that can be used 
to inform flow but did not collect as the focus was on flow estimation on the highway system. One 
advantage of the RFID system is that if available at multiple locations, it could be used as ground 
truth as it would uniquely identify trucks. Figure 1 and Table 1 provide an overview of the sensors 
available in the ROI spanning an area of approximately 12 square miles north of the Port of Long 
Beach and the Port of Los Angeles. The map of Figure 1 with all the sensor locations for the Truck 
Sensor Dataset is available online at: 
 
https://www.google.com/maps/d/u/0/edit?mid=1fIdKIyqwpWPwW0RDsmf-
pwg_3M0pfGo&ll=33.826202632011245%2C-118.37865048828125&z=11 
 
The dataset contains 21 CCTV cameras, 20 WIM stations, and 6 TAMS stations regarding sensor 
counts. The ROI counts are 9 CCTV cameras, 14 WIM stations, and 2 TAMS stations. 
 
For all sensors in the ROI, data were available for Fri 11/3, 5 PM to Sun 11/5, 12 AM (19 hours), 
and Tue 11/7, 9 AM to Wed 11/8, 10 AM (13 hours). Therefore, we used this subset in the 
experiments to evaluate the truck detection and counting and the truck flow estimation algorithms 
of sections  CCTV Truck Detection and Counting and Truck Volume Modeling, respectively.  

https://adms.usc.edu/app
https://www.google.com/maps/d/u/0/edit?mid=1fIdKIyqwpWPwW0RDsmf-pwg_3M0pfGo&ll=33.826202632011245%2C-118.37865048828125&z=11
https://www.google.com/maps/d/u/0/edit?mid=1fIdKIyqwpWPwW0RDsmf-pwg_3M0pfGo&ll=33.826202632011245%2C-118.37865048828125&z=11
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Figure 1. Arterial and highway IDL sensor availability in the ROI from 2019 to 2023. 
 

 
Table 1. Periods with available sensors in ROI 

 
 

 
Sensor Periods Available Count 

CCTV 2023 11/02 5 PM to 11/05 12 AM 
2023 11/07 9 AM to 11/08 10 AM 

9 

WIM 01/01/2019 – 08/31/2023  
11/02/2023 – 11/08/2023 

14 

TAMS 11/01/2023 - 11/10/2023 2 
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Figure 1. CCTV (cameras), WIM (weights), and TAMS (O) in ROI 
 
 
Region of Interest 
 
We have selected a region of interest (ROI) approximately 12 square miles in size, north of the 
Ports of Los Angeles and Long Beach. This area was specifically chosen due to the significant 
impact of truck traffic on freight movement to and from these major ports. The Ports of Los 
Angeles and Long Beach are among the busiest ports in the United States, serving as critical hubs 
for international trade. The constant flow of trucks transporting goods from the ports to various 
distribution centers and end destinations contributes to substantial traffic congestion in the 
surrounding areas. This heavy truck traffic not only affects the efficiency of transportation logistics 
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but also has significant environmental and health implications. Emissions from diesel trucks 
contribute to air pollution, which can lead to respiratory problems and other health issues for 
residents. The increased traffic volume also leads to greater wear and tear on infrastructure, 
necessitating more frequent repairs and maintenance. By focusing on this ROI, we aim to better 
understand and address the challenges posed by freight transportation, develop strategies to 
mitigate negative impacts and improve the overall quality of life for communities in this region. 

CCTV data 
The CCTV video data consists of recordings from closed-circuit television cameras (CCTV) that 
are used by Caltrans to monitor the freeways. With this research, we aim to repurpose these 
sensors to count trucks as an input into the algorithms that estimate truck flow. Because Caltrans 
regularly updates its cameras, therefore, the resolution of the available cameras in the ROI can 
vary. However, when using the recordings to detect and count trucks, the footage resolution does 
not seem to be a limiting factor, so videos from older cameras can also be used. Table 2 provides 
an overview of the complete CCTV data collected with the help of Caltrans District 7 and shows 
which CCTV is available on highways. The table shows 12 CCTVs, 9 in the ROI and on a 
highway. Of the relevant 9 cameras in the ROI, there are two periods during which all 9 cameras 
have recordings available: 

● Fri 11/3 5 PM to Sun 11/5 12 AM (19 hours) 
● Tue 11/7 9 AM to Wed 11/8 10 AM (13 hours) 

These are the specific CCTV recordings that we are leveraging in the experiments. 
 

Table 2. Complete CCTV dataset availability for when WIM and TAMS data are available. 
   11/2-11/5 11/7-11/8 

ID HWY ROI From To From To 

221  X 11/3 1:00 PM 11/5 12:00 AM 11/7 8:00 AM 11/8 10:00 AM 

222  X 11/3 12:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

223  X 11/3 11:00 AM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

224  X 11/3 11:00 AM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

255 X X 11/3 1:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

270 X X     11/7 9:00 AM 11/8 11:00 AM 

276   11/3 9:00 AM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

277   11/3 8:00 AM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

282   11/3 7:00 AM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

283   11/2 11:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

284   11/2 11:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

285   11/2 10:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

286   11/2 10:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 
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323 X X 11/2 10:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

324   11/2 7:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

327 X X 11/2 7:00 PM 11/5 12:00 AM 11/7 9:00 AM 11/8 11:00 AM 

335 X X 11/3 5:00 PM 11/5 12:00 AM 11/7 6:00 AM 11/8 11:00 AM 

336 X X 11/2 3:00 PM 11/5 12:00 AM 11/7 5:00 AM 11/8 11:00 AM 

337 X X 11/2 6:00 PM 11/5 12:00 AM 11/7 6:00 AM 11/8 11:00 AM 

954 X X 11/2 3:00 PM 11/5 12:00 AM 11/7 8:00 AM 11/8 11:00 AM 

956 X X 11/2 1:00 PM 11/5 12:00 AM 11/7 7:00 AM 11/8 11:00 AM 
 
WIM data 
Thanks to Caltrans, we have collected WIM station data in Table 3, which includes data from 
recently commissioned WIM stations that are not yet mapped on the Caltrans website WIM map 
at https://dot.ca.gov/programs/traffic-operations/wim/locations. Data temporal coverage is from 
Jan 1, 2019, to Aug 31, 2023, and Nov 02, 2023, to Nov 08, 2023. As shown in Table 3, spatial 
coverage is on and around the Port of Los Angeles and Port of Long Beach in Caltrans District 
7.  The curated dataset includes the geographical coordinates of all WIM stations, which were 
geocoded by the Postmile Services. 
 
Tables 3 and 4 summarize the WIM data. Table 3 provides sensor availability, and Table 4 shows 
a breakdown by year. There are 7 WIM stations in the ROI that are in service and that we can 
leverage for the experiments. WIM data files consist of individual truck records, including time 
lane and truck class information according to Caltrans WIM ASCII TRUCK RECORD FILE 
FORMAT, which we document in the dataset metadata. 
 

Table 3. WIM station information 
ID Route ROI Availability  Issues 

008 101  Jan 1, 2019 - Nov 22, 2022 Server issues 

009 101  Jan 1, 2019 - Nov 22, 2022 Server issues 

012 405  Jul 27, 2020 - Aug 31, 2023   

013 405  Jan 1, 2019 - Aug 31, 2023   

047 5   Under construction since Oct 13, 2018 

048 5   Under construction since Oct 13, 2018 

059 710 X Jan 1, 2019 - May 23, 2022 Phone line issues 

060 710 X Jan 1, 2019 - Oct 21, 2021 Phone line issues 

066 126  Jan 1, 2019 - Nov 23, 2022 Server issues 

079 91 X Jan 1, 2019 - Nov 23, 2022 Server issues 

https://dot.ca.gov/programs/traffic-operations/wim/locations
https://postmile.dot.ca.gov/PMQT/PostmileQueryTool.html?
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080 91 X Jan 1, 2019 - Nov 23, 2022 Server issues 

082 210   Under construction since Aug 3, 2018 

083 210   Under construction since Aug 3, 2018 

116 47   Abandoned since Mar 2012 

121 710 X Sept 1, 2021 - Aug 31, 2023   

122 710 X Sept 1, 2021 - Aug 31, 2023   

123 103 X Dec 1, 2021 - Mar 14, 2023 Phone line issues 

124 47 X Dec 1, 2021 - Oct 18, 2022 Phone line issues 

870 405 X Jan 1, 2019 - Jan 3, 2021 Phone line issues 

872 405 X Jan 5, 2022 - Aug 31, 2023   
 

Table 4. Stations available by year. Rows in yellow denote 
Statio
n 

ROI 2019 2020 2021 2022 2023/01-08 2023/11/2-8 

008  X X X X  X 

009  X X X X  X 

012  X X X X X X 

013  X X X X X X 

059 X X X X    

060 X X X X    

066  X X X X  X 

079 X X X X X  X 

080 X X X X X  X 

121 X   X X X X 

122 X   X X X X 

123 X   X X X X 

124 X   X X  X 

870  X X X    

872 X    X X X 
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TAMS data 
This dataset contains the Truck Activity Monitoring System (TAMS), originally conceived and 
developed by the University of California, Irvine. TAMS sensors consist of existing Inductive 
Loop Detectors (ILD) upgraded with inductive loop signature technology and implementing state-
of-the-art machine-learning classification models. Each row corresponds to a single WIM record 
providing the following information: 

● lane_dir: directions N/S as 1 or 2 
● lane: lane number, 1-3 
● epoch: Unix timestamp 
● tier2_class: vehicle class according to the five-vehicle category scheme of Table 5. 

For Wed Nov 01, 2023, 00:00:02 to Fri Nov 10, 2023, 23:59:58 GMT-0800 (Pacific Standard 
Time), only two TAMS are available: I-710 N/S. 
 

Table 5. Five-vehicle category scheme: 
tier2_class_id tier2_class description 

1 PC Passenger Vehicle 

2 SU Single Unit Truck 

3 Single Truck with Single Trailer 

4 Semi Tractor with Semi-Trailer 

5 Multi Tractor with Semi-Trailer 
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CCTV Truck Detection and Counting 
The goal of this study is to investigate the feasibility and usefulness of using traffic monitoring 
CCTV videos for truck detection and counting. Using a deep learning-based algorithm, i.e., 
YOLO, as the detection model, we explore the possible benefits of visual images in monitoring 
truck movement. To assess the effectiveness of our approach, truck traffic data were collected and 
labeled, encompassing both daytime and nighttime, employing our custom dataset sourced from 
the Caltrans. Using the collected dataset, the performances of deep learning models trained for 
nighttime and daytime conditions are assessed and compared. Additionally, leveraging the trained 
object detection models and the StrongSORT object counting algorithm [6 ], the number of passing 
trucks was counted from the videos. Furthermore, through a comparison of the results with the 
ground truth count, we investigate the effectiveness of our approach. This study will contribute to 
the practical and reliable image learning-based solutions that support 24/7 truck movement 
understanding, and the studies in urban traffic management, environmental sustainability and 
public safety. 

Modeling 
 
Some number of sample images from our CalTrans video datasets were manually selected and 
labeled to categorize typical instances of trucks that showed up in the videos in order to perform 
supervised machine learning, i.e., truck detection. One frame per second (1fps) was used for 
sampling images in labeling videos. This sampling frequency was chosen to reduce the manual 
labor in labeling while not missing truck detection. Considering that a passing truck appears for at 
least several seconds (i.e., in several images) in a video so our model can have enough chances to 
detect and count it. 

9 one-minute clips are used from locations 270, 327, and 956 to construct a training dataset. These 
contain recordings of roads with moving trucks, shot at 6 am, 10 am, and 2 pm. Frames are sampled 
from these videos at the rate of 1 frame per second. Some statistics pertaining to the training set 
are given in Table 6. 

Table 6. CCTV Datasets used for modeling. 

Split Images Labeled Images Backgrounds Instances 

Training 368 267 101 788 

Testing 185 127 58 232 

Total 553 394 159 1020 
 

Methods 
 
We have devised two strategies for truck detection leveraging the cutting-edge object detection 
algorithm YOLOv5 [4]. Our implementation of the truck detection and classification component 
is based on the YOLOv5 network. YOLOv5 is a two-stage object detection and classification 
framework that improves upon previous-generation variants. The main benefit of YOLOv5 is that, 
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besides its high detection accuracy, it incurs very low inference times, allowing us to deploy it on 
video streams. We train the model to detect the four classes in our dataset: [class description]. 
Additionally, to handle the small imbalance in our dataset, we perform upsampling and 
augmentation during training. After classification, the detected objects are forwarded to the 
tracking component. The tracker processes the detected objects in a sequence of frames and makes 
associations of bounding boxes that contain the same object across multiple frames. In this study, 
we use the StrongSORT [6] algorithm. This algorithm builds on top of the traditional SORT 
algorithm with a pre-trained association metric. The main benefit of this algorithm is its ability to 
track objects even during extended periods of occlusion, a phenomenon that is typical in highways, 
especially during rush hours. 

Figure 2 demonstrates the workflow of our truck detection and counting method. In details: 

● An instance of the YOLOv5-small model is trained on frames of training videos. 
● The fine-tuned YOLOv5-small model is then loaded into the StrongSORT model. 
● A given testing video is expanded into individual frames, where each frame is then fed to 

the detection module, which is the fine-tuned YOLOv5-small model. 
● Results from the detection stage are passed on to the tracking stage. 
● The tracking module then generates results for tracked objects. 
● A CSV file is generated for all objects detected and tracked by the model, containing object 

ID and timestamps in the video when the object was first and last seen by the StrongSORT 
model. 

 

Figure 2. Workflow of Truck Detection and Tracking 
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Experiments and Results 

In the first set of experiments, we evaluate the performance of overall truck detection and 
classification in terms of Precision (P), Recall (R), and Mean Average Precision (mAP@.5) using 
an Intersection-over-Union (IoU) threshold of 0.5. Table 7 summarizes the overall detection 
performance of the models. 

In the experiments, we used the following setups: 

1. Training the YOLOv5s model 

● Epochs: 50 
● Image Size: 640 x 640 
● Batch Size: 32 
● Optimizer: AdamW (lr = 0.01) 

2. Inference using StrongSORT 

 
Figure 3: Hyperparameters for StrongSORT 

Apart from the above, we use a confidence threshold of 0.6 and IoU threshold of 0.4 for detection. 

To generate inference results, we used 10 1-minute CCTV videos shot at location 255 between ~ 
9:01-9:11 am (07-17). The 10 videos are stitched together to generate one, 10-minute 8-second 
long video. The 10 videos used actually are a part of a larger dataset containing 2 hours worth of 
video content shot at 9 CCTV locations. From this test dataset, we generated the results in Table 
7. 

Table 7. Detection Accuracy 

Conf Precision Recall mAP50 mAP50-95 

0.4 0.73 0.78 0.786 0.541 

0.5 0.762 0.746 0.777 0.54 

0.6 0.795 0.685 0.758 0.534 
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Table 8. Counting Results for Test Videos (IOU thresh = 0.4, Conf = 0.6) 

Video #Trucks Detected Actual #Trucks CER* 

270_2pm_0000.122_0061.110.mp4 34 31 0.0967 

327_2pm_0048.836_0112.353.mp4 9 5 0.8 

956_2pm_0000.132_0060.233.mp4 9 7 0.2857 

Overall 52 43 0.21 

 * CER = (absolute diff b/w detected and actual) / #actual trucks. 

For truck counting using StrongSort algorithm, we used videos from three different CCTV 
locations (270, 327, 956). Table 8 shows the counting accuracy in CER. Depending on camera 
angles and other lighting conditions of CCTV mounting, detection and counting accuracy may 
vary significantly. For example, a video from the location 270 provided a very high accuracy while 
that from 327 showed a very low accuracy. Note that these are initial performance evaluation and 
we will update with more experimental results.   

After developing the general truck detection and counting model, we applied it for multiple CCTV 
videos and generated results. Eight CCTV locations in the ROI were analyzed during 9-10 AM on 
Nov. 7, 2023 (see Table 9). For each CCTV location, the model detected and counted the number 
of passing trucks. For each detected truck, the result was recorded in the following tuple format: 
<TruckID, Time of First Appearance, Time of Last Appearance, Confidence, Direction> and the 
results were used in the truck volume modeling in the next Section.  

Table 9. Counting Results at Eight Different CCTV Locations during 9-10 AM on Nov. 7, 2023 

 

Discussions 
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Our experimental results demonstrated the feasibility that CalTrans CCTV analysis for truck 
detection and counting can be used in reality. The overall detection and counting accuracy were 
around 0.8 with basic models. The accuracy is expected to be higher when we handle more detailed 
real world considerations in image machine learning. Throughout the project, we identified the 
following issues in analyzing CalTrans CCTV video streams (Figure 4):  

1) Road coverage issue: Most cameras are covering both sides of highways. But some 
cameras are not fully covering all lanes of the road so missing passing trucks 
(undercounting issue). On the contrary, a camera may cover not only highways but also 
nearby local roads. Then, an overcounting issue arises. 

2) Environmental issue: Some cameras are heading East or West so facing a very strong 
Sunlight at sunrise or sunset time, which limits the identification of any objects in images. 
Another challenging case is foggy weather which blurs images.    

3) Nighttime low light issue: Nighttime videos are fundamentally constrained by low light 
images so detection accuracy suffers. 

 

Figure 4. Real World Issues in CalTrans CCTV Video Analysis 
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Truck Volume Modeling 
Because CCTV and WIM sensors do not uniquely identify and track vehicles, extracting mobility 
patterns from their detections is challenging. We have proposed a framework named VPE, short 
for Visit Probability Estimation, that processes roadside sensor observations to estimate the 
probability with which a vehicle visits a road segment at a specific time. VPE is powered by LEM, 
short for Location Estimation Model, a novel mathematical model that calculates location 
transition probabilities while considering the sensors’ reliability, and APD+, an algorithm that 
captures the uncertainty of movement between two endpoints. Our experiments on synthetic 
datasets show that the proposed methods achieve high accuracy while maintaining practical 
computation time. 
Modeling 

 
Figure 4. The architecture and data flow of the VPE framework. 
 
Our proposed framework processes sensor observations to estimate the probability that a given 
vehicle visited, i.e., traversed, a road segment. Figure 4 shows the components of VPE and how 
they interconnect. VPE takes as input a set of sensors 𝑆𝑆, their observations 𝐷𝐷, and a set of locations 
𝐿𝐿 at which the sensors detect vehicles. The output of VPE is a visit probability distribution over 
the road segments at each time step and for each vehicle. At first, sensor observations are processed 
to generate the detection vector for a given vehicle for the current time step, where each sensor 
accounts for one element of the detection vector. Then, the location of the vehicle at the previous 
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time step (referred to as the last known location) is used to make an initial estimation of the 
probability that the vehicle is at any of the locations in the next time step (prior probabilities). 
Subsequently, the sensor's characteristics and trustworthiness are used to refine these probabilities 
and account for errors in detection, i.e., false positives and negatives. A visit probability 
distribution is calculated between the last known location and each next location that has non-zero 
probability. VPE produces its final output by combining these individual visit probability 
distributions. 

Methods 

    
(a) The two endpoints (b) Actual trajectory (c) Shortest path 

(d) Probability 
distribution 

Figure 5. Visit probability estimation between two endpoints. In (a), the two endpoints 𝑙𝑙𝑎𝑎 and 𝑙𝑙𝑏𝑏  
are shown; in (b), the actual path (trajectory) is presented as a green line; in (c), the path is 
recovered using the fastest path method; and in (d) the probability distribution using road 
network-based bridgelets is plotted. 

Consider the example shown in Figure 5. On the far left (Figure 5a), the two endpoint locations, 
𝑙𝑙𝑎𝑎 and 𝑙𝑙𝑏𝑏, are shown on a map. Next to it (Figure 5b), the actual path that the vehicle traveled on 
to get from the first location to the second is shown. The shortest path between the two locations 
is drawn in the middle-right map (Figure 5c). Evidently, the shortest path method misses several 
segments of the path, leading to inaccurate insights. However, on the far right (Figure 5d), a 
probability distribution over the road network segments is computed, capturing the mobility 
uncertainty more accurately. We observe that even though the edges that fall on the shortest path 
still carry a lot of weight (dark red), other possible edges retain some probability depending on 
how likely they are to have been used (with orange and yellow indicating a higher or lower 
probability, respectively.) 

To estimate a probability distribution such as the one shown in Figure 5d, we first employ our 
proposed algorithm APD+ to discover the most likely feasible paths the vehicle could have taken. 
We refer to the set of these paths as bridgelet. Subsequently, we weigh each constituent path of 
the bridgelet and aggregate them to produce a probability cloud, i.e., a mapping from road 
segments to the probability that the segment was visited during the trip. We detail the steps in our 
paper “Estimating mobility distributions from uncertain roadside sensor datasets” published at the 
25th International Conference on Mobile Data Management (MDM’24). 
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Experiments and Results 

We conducted experiments to evaluate the performance of LEM in terms of Precision, Recall, and 
F1 scores. The following datasets are used in our experiments: 

● Road Network: We obtain the road network for the metropolitan region of Los Angeles 
from OpenStreetMap. The road network graph contains 3,239,158 nodes and 4,190,761 
edges. 

● Traffic Data: We use the ADMS [1] system as the traffic data source and use the methods 
described in [3] to estimate the traffic at every road segment. 

● Trajectories: We use a synthetic trajectory generator [2] to simulate 1000 realistic truck 
trajectories in a controlled environment where the traffic data is known. 

● Sensors: We randomly distribute 300 sensors on the road network and replay the synthetic 
trajectories to generate sensor observations. We simulate various settings, from very 
reliable to very unreliable sensors. 

 

  
Figure 6. Comparison of LEM against baselines using F1 score and Jensen-Shannon divergence. 

We varied the method used to generate the location prior probabilities and evaluate how the 
accuracy of LEM is affected. Specifically, we compare the following methods: 

● UNI: Assigns the same probability to all locations in the detection vector (uniform). 
● IDW: Uses inverse distance weighting to assign probabilities so that further away locations 

receive lower probability. 
● ITTW: Similar to IDW but uses travel time instead of distance. 
● REACH-UC: A variant of our approach that does not clip the probabilities. 
● REACH-AC: A variant of our approach that only clips the final aggregated location 

probabilities using a threshold 𝜃𝜃 = 10−4. 
● REACH: Our proposed reachability-based method with a clipping threshold 𝜃𝜃 = 10−4. 

The difference between this method and REACH-AC is that probabilities at intermediate 
time steps are also clipped. 

Figure 6 shows the performance of all the algorithms. We observe that UNI exhibits the lowest F1 
score as expected because it gives all detections equal probability, even if it is not feasible for the 
vehicle to travel from its last known location to that of the detection. Similar observations can be 
made for IDW and ITTW. However, these methods are more accurate than UNI because they 
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implicitly assume that the farther away or the longer the vehicle travels to reach the detection, the 
less likely it is to be a true positive. They both fail to take into account the temporal dependency 
between the current and detection time steps, i.e., even if a detection is far, it may still be feasible 
to reach there in time. 

On the other hand, the three reachability-based methods exhibit better performance, with REACH 
performing the best in terms of F1 score. Intuitively, this is attributed to the fact that detections 
that are not reachable are ignored. Finally, the distributions calculated by REACH exhibit the 
lowest JSD score. This means that the estimated distribution is very similar to the real distribution. 

    
Figure 7. A visual example of a trajectory (red line), the set of sensors (grey dots), and the 
estimated location distributions (color-coded circles) at four different time steps. 

In Figure 7, we provide a visual example of a trajectory and the vehicle's estimated locations at 
four different time steps. In the example, we plot the sensors using grey dots and the real trajectory 
of the vehicle as a red line for reference. Note that VPE is unaware of the trajectory but only of 
the sensors' observations. The only information provided to the algorithm for this example is the 
vehicle's initial location marked with a pin. We observe that at the first time step, VPE assigns a 
non-zero probability (color-coded circles) to a location that the vehicle did not visit. This is 
attributed to the fact that a sensor that observes that location is triggered at a time that is feasible 
to reach from the vehicle's current location. However, at subsequent time steps, the algorithm 
makes more accurate estimations. The reason behind this is that only a few detections are reachable 
by the vehicle. 

Simulation with real-world sensors 

Obtaining any real-world ground truth is nearly impossible. However, we still want to evaluate 
how well our proposed method does in a real-world setting. To that end, we simulate 5000 
trajectories using real-world traffic data in the region of interest [1, 2] and we “replay” the 
simulated trajectories to generate the observations that 21 real sensors would have generated (10 
WIM, 2 TAMS, 9 CCTV). In this setting, simulated trajectories are used to generate the ground 
truth truck flow for road segments in the region of interest. We evaluate the results on two families 
of metrics: 

1. Set-based metrics: Precision, Recall, and F-1 scores 
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These metrics evaluate whether we estimate the precision on the “right” edges, i.e., the 
edges that incurred/observed truck volume in the simulation.  
We compare three methods: 

• IDW: Weights feasible pairs of consecutive observations using an inverse distance 
weighting function.  

• ITTW: Similar to IDW but with an inverse travel time weighting function. 
• APD: Our proposed reachability-based method that uses ITTW but with a pruning 

strategy to exclude pairs that are do not satisfy the reachability requirements (more 
details in our paper []) 

The table below summarizes the results. We observe that APD achieves the highest F-1 
score. Overall, APD significantly boosts recall only for a relatively small drop in 
precision. The reason behind this is because APD considers more than one paths between 
pairs of consecutive sensor observations. While this impacts precision (because it 
estimates flow on edges that belong to a feasible path but may have never been used by 
trucks), it provides a significant boost to recall for the same reason. 

Method Precision Recall F1 

APD 0.753 0.864 0.805 

ITTW 0.777 0.555 0.678 

IDW 0.841 0.421 0.561 
 

2. Estimation error metrics: MAE, RMSE 
These metrics evaluate how accurate the flow estimation is. We estimate the flow using 
the same three methods and compare their results. 

 

 
Figure 8. Mean expected truck flow of a road segment and the estimations generated by 
three methods: APD (proposed method), ITTW, and IDW. 
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We summarize the results in Figure 8. We observe that IDW and ITTW have similar 
performance with a MAE greater than 10. On the other hand, APD incurs a MAE of 6. In 
plain words, APD’s estimations are on average off by 6 trucks whereas the other baselines 
are off by 10. The difference may seem insignificant but when multiplied by the number 
of road segments in a complex road network, it can add up to significantly large errors. 

 
Figure 9. Flow estimations of two road segments shown on a map. 

Another important observation, as shown in Figure 9, is that estimating the flow at road 
segments where no sensors exist nearby is quite challenging and typically incurs higher 
errors. This is expected because with no sensors nearby to provide us with insights, the 
uncertainty in those road segments becomes significantly higher. 
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Data Management Plan 
 
This Data Management Plan was prepared to include the artifacts of this research and comply with 
recently enacted U.S. Department of Transportation Public Access Policies, which require that all 
data used or created under the University Transportation Centers program be accessible to the 
public.  
 
Products of Research  
The data that were collected and used for the study are listed as part of the Truck Sensing Dataset 
section and include: 

● CCTV data: recordings for 22 cameras from Fri 11/03/2024 5 PM to Sun 11/5 12 AM (19 
hours) and Tue 11/07/2024 9 AM to Wed 11/8 10 AM (13 hours) provided by Caltrans 
District 7. 

● WIM data: contains the Weigh-in-Motion (WIM) data from 15 stations in California 
District 7 from Jan 1, 2019, to Aug 31, 2023, and from Nov 02, 2023, to Nov 08, 2023, as 
provided by Caltrans Traffic Operations. 

● TAMS data:  five-vehicle category scheme counts (passenger vehicle, single-unit truck, 
truck with single trailer, tractor with semi-trailer, and tractor with multiple trailers) for 
the TAMS ILD 710N/S from Wed Nov 01, 2023, 00:00:02 to Fri Nov 10 2023 23:59:58 
PST as provided by the Institute of Transportation Studies of the University of California, 
Irvine. 

In addition, we have produced as part of the research: 
● Truck detection and counting models on working on image data and producing 

probabilistic truck observations 
● Truck flow estimation algorithms with corresponding experimental results on synthetic 

and Truck Sensing Datasets data.  
 
Data Format and Content  
Describe the format, or file type, of the data and the contents of each file. 
 

● CCTV data consists of approximately 2TB of recordings in mp4 format stored in folders 
according to the 3-digit camera identifier. 

● WIM data consists of day-level ASCII files named with year, month, day, and station ID. 
Each file consists of individual WIM records in ASCII TRUCK RECORD FILE 
FORMAT: This file shall include every "truck record" in the daily data file. Each field 
shall be comma delimited and padded with blanks to complete the fixed logical record 
length. For axle weight-only weighing (in lieu of right and left wheel weighing), either 
the "AXLE n RT. WEIGHT" or the "AXLE n LT. WEIGHT" field may be used for the 
"AXLE n WEIGHT". 

● TAMS data for TAMS I-710 N/S are stored in a single file named i710_data.csv, with 
headers lane_dir, lane, epoch, and tier2_class. lane_dir: encodes the N/S directions N/S as 
1 or 2, lane: is the lane number, 1-3, epoch: is the Unix timestamp of the record, and 
tier2_class: is the vehicle class according to the five-vehicle category scheme (1: 
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Passenger Vehicle, 2: Single Unit Truck, 3: Truck with Single Trailer, 4: Tractor with 
Semi-Trailer and 5: Tractor with Semi-Trailer (Multi). 

 
Data Access and Sharing  
 
The general public can access the data by contacting the researchers and receiving access to a 
Google Drive that contains all the data used in the research with README files describing each 
dataset, its metadata, including collaborators’ information, spatial and temporal coverage, 
provenance and license, and a data dictionary. Because of their size, only a sample of the CCTV 
cameras included in the ROI is in Google Drive at the following public link: 
 
https://drive.google.com/drive/folders/1BCIQ4YoHNahkMJwT9OqTjEsFvofxQ6zf?usp=sharing  
 
Reuse and Redistribution  
Restrictions on how the data can be reused and redistributed by the general public. TBD according 
to Caltrans requirements.  
 
 

https://drive.google.com/drive/folders/1BCIQ4YoHNahkMJwT9OqTjEsFvofxQ6zf?usp=sharing
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